Dampak Teknologi Biogas Dari Kotoran Sapi Terhadap Lingkungan Dan Ekonomi Peternakan
DOI:
https://doi.org/10.70134/jipena.v2i3.826Keywords:
Biogas, Cattle manure, Environmental sustainability, Livestock economy, Renewable energyAbstract
This study examines the impact of biogas technology derived from cattle manure on both environmental sustainability and the economic performance of livestock farmers. Using a mixed-method approach, the research combines quantitative measurements of greenhouse gas emission reduction and energy cost savings with qualitative insights from farmers’ experiences. The findings reveal that the application of biogas significantly reduces methane emissions by up to 40–50%, improves the sanitation of livestock environments, and lowers the risks of water and air pollution. Economically, farmers benefit from reduced household energy costs by 30–40% per month and gain additional income through the utilization and sale of bio-slurry as organic fertilizer. Furthermore, the adoption of biogas technology fosters community empowerment and strengthens rural energy resilience. However, challenges such as high initial investment costs and limited technical knowledge remain barriers to wider adoption. Overall, biogas technology is proven to be a sustainable solution that supports environmentally friendly livestock management and improves the economic resilience of farming households, provided that policy support and community participation are strengthened.
Downloads
References
Abbasi, T., & Abbasi, S. A. (2011). Renewable energy sources: Their impact on global warming and pollution. PHI Learning Pvt. Ltd.
Adhikari, S., & Heinonen-Tanski, H. (2006). Household biogas plants in Nepal: A case study. Renewable Energy, 31(15), 2247–2252. https://doi.org/10.1016/j.renene.2005.11.012
Agyeman, F. O., & Tao, W. (2014). Anaerobic co-digestion of food waste and dairy manure: Effects of ammonia on methane production. Journal of Environmental Management, 146, 200–209. https://doi.org/10.1016/j.jenvman.2014.07.042
Angelidaki, I., & Ellegaard, L. (2003). Codigestion of manure and organic wastes in centralized biogas plants. Applied Biochemistry and Biotechnology, 109(1), 95–105. https://doi.org/10.1385/ABAB:109:1-3:095
Budiyanto, M. A., & Wibowo, A. (2017). Pengelolaan limbah ternak sapi melalui pemanfaatan biogas di pedesaan. Jurnal Ilmu Lingkungan, 15(2), 100–107.
Chandra, R., Takeuchi, H., & Hasegawa, T. (2012). Methane production from lignocellulosic agricultural crop wastes: A review. Renewable and Sustainable Energy Reviews, 16(3), 1462–1476.
Chen, Y., Cheng, J. J., & Creamer, K. S. (2008). Inhibition of anaerobic digestion process: A review. Bioresource Technology, 99(10), 4044–4064.
Dadi, D., & Bekele, T. (2019). Economic and environmental benefits of biogas technology adoption by smallholder farmers in Ethiopia. Energy Procedia, 159, 411–416.
FAO. (2013). Mitigation of greenhouse gas emissions in livestock production. Food and Agriculture Organization of the United Nations.
Ghimire, P. C. (2013). SNV supported domestic biogas programmes in Asia and Africa. Renewable Energy, 49, 90–94.
Gunawan, B., & Hadi, S. (2018). Dampak biogas terhadap efisiensi biaya energi rumah tangga peternak sapi. Jurnal Energi dan Lingkungan, 12(1), 55–62.
Harahap, F., Silveira, S., & Khatiwada, D. (2017). Land use competition for production of food and liquid biofuels: An analysis of the arguments in the debate. Renewable Energy, 109, 431–439.
IEA. (2020). Outlook for biogas and biomethane. International Energy Agency.
IPCC. (2019). 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories. Intergovernmental Panel on Climate Change.
Jain, S., & Jain, S. (2017). Anaerobic digestion of crop residues: An overview. Energy for Sustainable Development, 41, 52–59.
Karki, A. B. (2005). Promotion of renewable energy technologies: Experience from Nepal. Energy for Sustainable Development, 9(2), 39–47.
Kumar, A., Samadder, S. R., Kumar, N., & Singh, C. (2021). Estimation of the environmental and economic benefits of biogas production from cattle dung. Journal of Cleaner Production, 283, 124641.
Lata, K., Lal, B., & Khan, A. A. (2018). Anaerobic digestion of cattle dung for biogas production. International Journal of Engineering Research & Technology, 7(6), 239–243.
Li, Y., Park, S. Y., & Zhu, J. (2011). Solid-state anaerobic digestion for methane production from organic waste. Renewable and Sustainable Energy Reviews, 15(1), 821–826.
Mamahit, A., & Manoppo, V. (2015). Potensi biogas dari limbah peternakan sapi potong di Minahasa. Jurnal Zootek, 35(1), 90–96.
Mata-Alvarez, J., Dosta, J., Macé, S., & Astals, S. (2011). Codigestion of solid wastes: A review of its uses and perspectives including modeling. Critical Reviews in Biotechnology, 31(2), 99–111.
Mulyana, D. (2016). Pemanfaatan bio-slurry hasil biogas sebagai pupuk organik. Jurnal Pertanian Berkelanjutan, 4(2), 67–74.
Ngumah, C. C., Ogbulie, J. N., Orji, J. C., & Amadi, E. S. (2013). Biogas production from animal and food wastes. World Journal of Microbiology and Biotechnology, 29(1), 116–125.
Nugroho, B., & Rachman, I. (2014). Pemanfaatan biogas untuk pemberdayaan masyarakat pedesaan di Jawa Tengah. Jurnal Sumberdaya Alam dan Lingkungan, 1(2), 20–27.
Rahman, M. A., & Muyeed, A. (2010). Role of biogas plants in rural development of Bangladesh. Renewable Energy, 35(6), 1239–1244.
Rutz, D., & Janssen, R. (2008). Biofuel technology handbook. WIP Renewable Energies.
Setiawan, A., & Hidayati, N. (2019). Efisiensi penggunaan energi biogas pada usaha peternakan sapi perah rakyat. Jurnal Peternakan Indonesia, 21(3), 200–209.
Singh, R., & Mandal, B. (2016). Energy recovery from cattle manure through anaerobic digestion in India. Renewable Energy, 96, 431–437.
Soeparman, S., & Kusnadi, I. (2015). Penerapan teknologi biogas pada peternakan sapi rakyat. Prosiding Seminar Nasional Teknologi Peternakan dan Veteriner, 2(1), 456–462.
Surendra, K. C., Takara, D., Hashimoto, A. G., & Khanal, S. K. (2014). Biogas as a sustainable energy source for developing countries: Opportunities and challenges. Renewable and Sustainable Energy Reviews, 31, 846–859.
Tchanche, B. F., Lambrinos, G., Frangoudakis, A., & Papadakis, G. (2011). Low-grade heat conversion into power using organic Rankine cycles – A review of various applications. Renewable and Sustainable Energy Reviews, 15(8), 3963–3979.
Thakur, I. S., & Srivastava, R. (2017). Biogas production from anaerobic digestion of cattle dung: A review. Indian Journal of Science and Technology, 10(14), 1–8.
Ward, A. J., Hobbs, P. J., Holliman, P. J., & Jones, D. L. (2008). Optimisation of the anaerobic digestion of agricultural resources. Bioresource Technology, 99(17), 7928–7940.
Yusuf, R. O., Noor, Z. Z., Din, M. F. M., & Abba, A. H. (2019). Methane emission reduction in livestock through biogas technology adoption. Journal of Cleaner Production, 226, 436–444.
Zhu, G., Li, Y., & Li, J. (2019). A comprehensive study on biogas development in China. Renewable and Sustainable Energy Reviews, 95, 498–510.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Fachrurizal (Author)

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.










