Nonlinear Pushover Analysis Of Reinforced Concrete Structures With Basalt Fiber Reinforcement In Seismic Zones

Authors

  • Siril Alfana Universitas Semarang Author

DOI:

https://doi.org/10.70134/ircee.v2i1.329

Keywords:

Seismic, Basalt, Concrete, Reinforcement, Performance

Abstract

This study investigates the seismic performance of reinforced concrete (RC) structures with basalt fiber reinforcement (BFRC) using nonlinear pushover analysis. The main objective is to evaluate the effect of basalt fiber reinforcement on the seismic response of RC structures located in earthquake-prone regions. The analysis focuses on key seismic parameters, including base shear, displacement, energy dissipation, and crack propagation. The results show that BFRC structures exhibit significantly enhanced seismic performance compared to conventional RC structures. The BFRC structures demonstrated higher base shear capacity, greater displacement capacity, improved energy dissipation, and better crack resistance. These improvements suggest that basalt fiber reinforcement can effectively enhance the ductility and strength of concrete structures, making them more resilient to seismic forces. The study highlights the potential of BFRC as a sustainable and efficient material for improving the seismic resilience of buildings in high seismic zones.

Downloads

Download data is not yet available.

References

Abolhasani, M., & Niazi, A. (2019). Seismic Performance of Fiber-Reinforced Concrete Buildings: A Numerical and Experimental Study. Earthquake Engineering and Structural Dynamics, 48(6), 689-702.

Akbar, H., & Malik, R. (2020). Basalt Fiber Reinforcement for Seismic Safety: A Review of Recent Studies. Journal of Civil Engineering and Construction Technology, 11(5), 122-130.

Al-Hadithi, A. B., & Al-Saadi, S. M. (2019). Seismic Behavior of Concrete Frames with Basalt Fiber Reinforcement. Journal of Earthquake Engineering and Structural Dynamics, 47(3), 212-226.

Aslam, M., Ghaffar, A., & Kiani, A. (2018). Seismic Performance of Basalt Fiber Reinforced Concrete Structures. Engineering Structures, 164, 82-94.

Behzad, M., & Taranath, B. (2017). Nonlinear Seismic Response of RC Frames: A Study on Energy Dissipation. Journal of Earthquake Engineering, 21(4), 629-648.

Choi, J., Park, S., & Kim, K. (2020). Seismic Performance of Basalt Fiber Reinforced Concrete Beams. Construction and Building Materials, 246, 118526.

Dai, X., & Chen, Q. (2018). Performance of Basalt Fiber Reinforced Concrete under Cyclic Loading. Materials and Structures, 51(6), 99.

FEMA (2000). FEMA 356: Prestandard and Commentary for the Seismic Rehabilitation of Buildings. Federal Emergency Management Agency.

Gajan, S., & Atkinson, G. (2018). Evaluation of Nonlinear Seismic Behavior in Basalt Fiber Reinforced Concrete Buildings. Journal of Structural Engineering, 144(4), 402-413.

Ghorbani, M., Shariati, M., & Mirmiran, A. (2021). Seismic Resilience of Concrete Structures with Basalt Fiber Reinforcement. Journal of Structural Engineering, 147(2), 04020029.

Hamedoni, H., Daeli, S. D., Zalukhu, M. H., & Zebua, D. (2024). Strategi pengelolaan risiko dalam konstruksi gedung tahan gempa di daerah rawan bencana. Jurnal Ilmu Ekonomi, Pendidikan dan Teknik, 1(2), 1-10. https://doi.org/10.70134/identik.v1i2.35

Harada, H., & Nakashima, M. (2016). Nonlinear Seismic Analysis of Reinforced Concrete Frames with Fiber Reinforcement. Journal of Structural and Construction Engineering, 51(3), 231-242.

Iqbal, H. A., & Ahmed, A. R. (2020). Influence of Basalt Fibers on the Seismic Resistance of Concrete Structures. International Journal of Concrete Structures and Materials, 14(3), 73-84.

Ismail, A. S., & Noman, M. (2019). Seismic Performance of Fiber-Reinforced Concrete Buildings. International Journal of Earthquake Engineering, 22(5), 345-358.

Kolago, D. P., & Zebua, D. (2023). Analisa beban pendinginan dalam perencanaan bangunan gedung. Jurnal Penelitian Jalan dan Jembatan, 3(2). https://doi.org/10.59900/ptrkjj.v3i2.171

Li, J., & Ma, L. (2017). Experimental Study on the Seismic Performance of Basalt Fiber Reinforced Concrete Beams. Journal of Materials Science, 52(9), 9870-9879.

Lin, F., & Wang, L. (2019). Seismic Response of Basalt Fiber Reinforced Concrete Frames: A Numerical Investigation. Structural Engineering Review, 31(2), 45-59.

Liu, C., & Zhan, X. (2020). Nonlinear Pushover Analysis of RC Structures Reinforced with Basalt Fibers. Materials and Structures, 53(4), 121-133.

Olivier, M., Manel, D., & Bousman, L. (2019). Durability and Performance of Basalt Fiber Reinforced Concrete. Construction and Building Materials, 225, 1214-1223.

Pan, Z., & Zhou, J. (2018). Effectiveness of Basalt Fiber Reinforced Concrete in Seismic Applications. Structural Concrete, 19(2), 211-225.

Papanikolaou, A., & Sideris, A. (2020). Experimental Study of Seismic Performance of Basalt Fiber Reinforced Concrete. International Journal of Civil and Structural Engineering, 9(2), 163-175.

Paroipo, W. T., Cahyono, M. S. D., & Zebua, D. (2022). Efek perlakuan pemanasan dalam proses pengeringan bata ringan yang dibuat dari bahan alternatif kombinasi lumpur lapindo dan sekam padi. Jurnal Penelitian Jalan dan Jembatan, 2(2), 9-13. https://doi.org/10.59900/ptrkjj.v2i2.82

Pereira, J., & Ferreira, M. (2020). Basalt Fiber Reinforced Concrete: A Review of Recent Advances. Construction and Building Materials, 240, 118091.

Rao, S., Karthik, N., & Harikrishnan, S. (2021). Performance of Basalt Fiber Reinforced Concrete in Seismic Zones. Journal of Materials Science, 56(12), 8534-8547.

Ridwan, D., Zebua, D., & Solihin. (2023). Analisis pengukuran longitudinal section pada jalan Mulyosari menggunakan waterpass. Jurnal Penelitian Jalan dan Jembatan, 3(2). https://doi.org/10.59900/ptrkjj.v3i2.169

Satoinong, L., Desnalia, D., Mintura, S., Paroipo, W. T., Gulthom, A., Simamora, J., & Zebua, D. (2024). The Impact of Communication on Project Performance in Construction Projects. IRCEE, 1(1). https://doi.org/10.70134/ircee.v1i1.45

Sharma, P., & Gupta, A. (2020). Seismic Analysis of Reinforced Concrete Beams with Basalt Fiber Reinforcement. Asian Journal of Civil Engineering, 21(7), 1123-1134.

Siddique, R., & Kaur, P. (2020). Effect of Basalt Fibers on the Properties of Concrete. Materials Science and Engineering: A, 778, 139028.

Tayeh, B. A., & Al-Saadi, S. M. (2019). Basalt Fiber Reinforced Concrete: Mechanical and Durability Properties. Materials Research, 22(2), e20180249.

Teras, D., Tjahjono, B., Ridwan, R., Saepudin, A., Arniansyah, A., Leihitu, D. D. J., & Zebua, D. (2024). Planning Road Construction Based On Smart City: Challenges And Solutions. IRCEE, 1(1). https://doi.org/10.70134/ircee.v1i1.44

Teras, D., Zebua, D., & Fiya. (2023). Proses penapisan terkait amdal pada pembangunan jalan di Desa Bangun Harja. Jurnal Penelitian Jalan dan Jembatan, 3(2). https://doi.org/10.59900/ptrkjj.v3i2.170

Tjahjono, B., Zebua, D., & Mita, V. (2023). Analisis kajian literatur risiko keselamatan dan kesehatan kerja (K3) dalam pembangunan gedung bertingkat di Indonesia. Jurnal Jurnal Penelitian Jalan dan Jembatan, 3(2). https://doi.org/10.59900/ptrkjj.v3i2.168

Tjahjono, B., Zebua, D., & Rusnani. (2023). Perbandingan nilai momen pada SpColumn dengan hasil eksperimen. Jurnal Penelitian Jalan dan Jembatan, 3(1), 1-7. https://doi.org/10.59900/ptrkjj.v3i1.130

Wibowo, L. S. B., & Zebua, D. (2021). Analisis Pengaruh Lokasi Dinding Geser Terhadap Pergeseran Lateral Bangunan Bertingkat Beton Bertulang 5 Lantai. Ge-STRAM: Jurnal Perencanaan Dan Rekayasa Sipil, 04(01), 16–20. https://doi.org/10.25139/jprs.v4i1.3490

Xie, J., & Li, B. (2017). The Effect of Fiber Reinforcement on the Seismic Performance of Concrete Structures. Journal of Civil Engineering, 60(10), 1234-1246.

Yang, S., & Lin, M. (2018). Nonlinear Seismic Performance of RC Structures with Basalt Fiber Reinforcement: A Numerical Study. Construction and Building Materials, 172, 1006-1017.

Younes, A., & Olofsson, K. (2019). Seismic Response of Reinforced Concrete Frames with Basalt Fiber Reinforcement. Journal of Structural and Environmental Engineering, 58(8), 435-447.

Zebua, D. (2022). Analisis pushover pada struktur bangunan bertingkat beton bertulang 10 lantai (Master's thesis, Universitas Narotama). Universitas Narotama Repository. http://repository.narotama.ac.id/id/eprint/1962

Zebua, D. (2023). Analisis displacement struktur beton bertulang pada gedung rumah sakit. Jurnal Penelitian Jalan dan Jembatan, 3(1), 20-25. https://doi.org/10.59900/ptrkjj.v3i1.133

Zebua, D., & Koespiadi, K. (2022). Pushover analysis of the structure a 10-floor building with ATC-40. IJTI International Journal of Transportation and Infrastructure, 5(2), 110-116. https://doi.org/10.59900/ijti.v5i2.110

Zebua, D., & Koespiadi. (2022). Performance evaluation of high-rise building structure based on pushover analysis with ATC-40 method. Applied Research on Civil Engineering and Environment (ARCEE), 3(02), 54-63. https://doi.org/10.32722/arcee.v3i02.4334

Zebua, D., & Siswanto, I. (2023). Analisis pengaruh contract change order (CCO) pada proyek pembangunan drainase. Jurnal Penelitian Jalan dan Jembatan, 3(2). https://doi.org/10.59900/ptrkjj.v3i2.167

Zebua, D., & Wibowo, L. S. B. (2022). Effect of soil type on lateral displacement of reinforced concrete building. Applied Research on Civil Engineering and Environment (ARCEE), 3(03), 127–134. https://doi.org/10.32722/arcee.v3i03.4965

Zebua, D., & Wibowo, L. S. B. (2022). Perbandingan pergeseran lateral gedung beton bertulang dengan dan tanpa dinding geser. Racic: Rab Construction Research, 7(1), 11-19. Retrieved from https://univrab.ac.id

Zebua, D., & Wibowo, L. S. B. (2023). Pengaruh jenis tanah terhadap simpangan lateral gedung beton bertulang. Jurnal Riset dan Pengembangan Sumber Daya, 6(1), 1-10. https://doi.org/10.25139/jprs.v6i1.4901

Zebua, D., Harita, H., Daeli, S. D., Zalukhu, M. H., & Laia, B. (2024). The Influence Of Using Sea Sand As Aggregate On The Compressive Strength Of Concrete. IRCEE, 1(1). https://doi.org/10.70134/ircee.v1i1.41

Zebua, D., Prayoga, P., & Waruwu, P. C. E. (2023). Evaluasi dan desain pengembangan infrastruktur pengaliran drainase di wilayah Ngagel Tirto Kota Surabaya. Jurnal Penelitian Jalan dan Jembatan, 3(1), 26-32. https://doi.org/10.59900/ptrkjj.v3i1.134

Zebua, D., Putra, A. A. S., Wibowo, L. S. B., & Alfiani, S. (2023). Evaluation of seismic performance of hospital building using pushover analysis based on ATC-40. Journal of Civil Engineering, Science and Technology, 14(2). https://doi.org/10.33736/jcest.5326.2023

Zebua, D., Shofiyah, A., & Purnomo, H. D. (2023). Analisis desain kinerja model halte berdasarkan lingkungan di tempat terpilih. Jurnal Penelitian Jalan dan Jembatan, 3(1), 8-19. https://doi.org/10.59900/ptrkjj.v3i1.132

Zebua, D., Waruwu, E., Lase, D., Yanita, R., & Giawa, J. F. K. (2024). Analisis kinerja struktur gedung beton bertulang sesuai ATC-40. Inovasi Pembangunan: Jurnal Kelitbangan, 12(03). https://doi.org/10.35450/jip.v12i03.816

Zebua, D., Wibowo, L. S. B., Cahyono, M. S. D., & Ray, N. (2020). Evaluasi Simpangan Pada Bangunan Bertingkat Beton Bertulang berdasarkan Analisis Pushover dengan Metode ATC-40. Ge-STRAM: Jurnal Perencanaan Dan Rekayasa Sipil, 3(2). https://doi.org/10.25139/jprs.v3i2.2475

Zebua, D., Wibowo, L. S. B., Cahyono, M. S. D., & Ray, N. (2020). Analysis pushover pada bangunan bertingkat beton bertulang 7 lantai menggunakan metode FEMA-356. Seminar Nasional Ilmu Terapan (SNITER) 2020, 4(1). https://doi.org/10.59900/ptrkjj.v3i1.133

Zebua, D., Wibowo, L. S. B., Rahman, H., & Rifani, R. (2022). Studi pengaruh peranan konsultan manajemen konstruksi pada proyek pembangunan tempat penyimpanan sementara limbah B3. Jurnal Penelitian Jalan dan Jembatan, 2(2), 1-8. https://doi.org/10.59900/ptrkjj.v2i2.81

Zhang, L., & Chen, X. (2017). Seismic Performance of RC Frames with Basalt Fiber Reinforced Concrete: A Finite Element Approach. Engineering Structures, 148, 171-184.

Zhang, S., & Wang, X. (2018). Nonlinear Seismic Analysis of Basalt Fiber Reinforced Concrete Buildings. Structural Engineering Review, 28(7), 395-409.

Zhang, W., & Li, X. (2020). Comparative Study on the Seismic Resistance of Fiber Reinforced Concrete under Dynamic Loading. Structural Concrete, 21(4), 583-594.

Published

2025-04-30